アスファルト混合物配合設計報告書

混合物: 再生粗粒度アスコン(20)

2024年 4月

倉吉アスコン株式会社

アスファルト混合物配合設計総括表

混合物の種類 再生粗粒度アスコン (2 0) 報告者 田子三由生

報告年月日 2024年 4月15日 報告 者 田子三由牛

1. 使用材料の種類及び産地

材料の種類	製造会社名	産地	材 質
5号砕石	坂田砕石工業㈱	岡山県久米郡久米南町	硬質粘板岩
6号砕石	坂田砕石工業㈱	岡山県久米郡久米南町	硬質粘板岩
7号砕石	坂田砕石工業㈱	岡山県久米郡久米南町	硬質粘板岩
砕砂	坂田砕石工業㈱	岡山県久米郡久米南町	硬質粘板岩
再生骨材 13-0	倉吉アスコン	倉吉市馬場町	アスファルトカ゛ラ
ストレートアスファルト 80~100	ENEOS(株)	岡山県倉敷市水島	ストアス80~100
R J - 1	三徳アスリード㈱		再生用添加剤

2. 使用骨材の配合割合

材料	5 号砕石	6号砕石	7号砕石	砕砂	再生骨材 13-0			計
配合割合%	20.2	12.9	2.8	4.1	60.0			100.0

3. 合成粒度

\$	る	V	≣ 53	mm	37.5	31.5	26.5	19	13.2	9.5	4.75	2.36	1.18	600 μm	300	150	75
通過	質量百	百分率(6				100.0	99. 0	80. 0		47. 5	30. 0		21. 5	14. 5	7. 5	5. 6
粒月	萨 经 1	上	艮				100	100	90		55	35		23	16	12	7
松	足 単山	一下 「	艮				100	95	70		35	20		11	5	4	2

4. 設計アスファルト量の決定

試	験	項	目	最適AS量	密度	理論密度	空隙率	飽和度	安定度	フロー	残留安定度
				(%)	(g/cm ³)	(g/cm ³)	(%)	(%)	(kN)	$(\frac{1}{100} \text{ cm})$	(%)
弒	₩	食	値	5. 1	2. 406	2.504	3. 9	75.0	9. 13	34	90.0
基	準値	上	限				7	8 5		40	
巫	平旭	下	限				3	6 5	4.90以上	20	75.0以上

※ マーシャル試験の結果はグラフより求めた値である

骨材試験成績表

目 的 配 合 設 計 試験年月日 2024年 4月15日

混合物の種類 再生粗粒度アスコン (2 0) 試験者 田子三由生

ふるい分け試験

	ふるい目の開き	5号砕石	6号砕石	7号砕石	砕砂	再生骨材 13-0		
	53 mm							
	37.5							
	31.5							
通	26.5	100.0						
通過質量百分率%	1 9	95. 2	100.0			100.0		
員	13.2	5.5	96. 5	100.0		99.3		
其	9.5							
分 家	4.75	0.5	6. 7	97. 2	100.0	66. 1		
$\frac{\tau}{\%}$	2.36		1.2	11.1	93. 5	42.8		
	1.18							
	600 μm			1.1	32.8	33. 7		
	3 0 0				17. 2	23.0		
	1 5 0				10.1	11.9		
	7 5				6.0	9.0		

性状試験

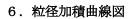
ITT-DCH. 4-00C								
試 験 〕	質 目	5 号砕石	6 号砕石	7号砕石	砕砂	再生骨材 13-0		
	表 乾	2.687	2.674	2.654	2.661			
密 度	かさ	2.668	2.649	2.615	2. 627	_		
	見 掛	2. 720	2.718	2. 721	2. 723			
吸水率/水	分量%	0.72	0.95	1. 48	1.30	_		
すりへり	減 量 %		12. 3					
安定	性 %	1. 1	1. 4	1.5	2. 7	_		
微粒分量	試 験 %	_	_	_	_	1. 2		
軟 石 含 有	重 %	0.4	0.5					
偏 平 細 長	石 片 %	1.6	2. 4		_	_		
単 位 容 積	質量	1. 581	1.558	1. 497	1.689	_		
粘 土 塊	量 %	0.01	0. 02	_	_	_		
最 大	密度	_		_	_	2. 511		
旧 A s 含	有 量 %					4.87		
旧 A s 争	入 度							
圧 裂	係 数					1.10		

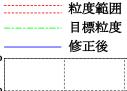
	】 的 配 ´	合 設 詞	₽				乱	徐年 月日	2024年	4月15日	
				0)					田子三由生	17,110	
126			(2	0)				W X 11	H1-HT		
3	使用予定骨材の食	合成粉度	修正後								
 •	D/1117CH4147	5号砕石	6号砕石	7号砕石	砕砂	再生骨材					
	骨 材	0.244-41	0 514-41	7 7 11 7 7 1	14-42	13-0					
配	合 率 A %	20.2	12.9	2.8	4.1	60.0					
	5 3 m m										
	37.5										
通	31.5										
過	26.5	100.0									
質	1 9	95.2	100.0			100.0					
量	13.2	5.5	96.5	100.0		99.3					
百	9.5										
分	4.75	0.5	6.7	97.2	100.0	66.1					
率	2.36		1.2	11.1	93.5	42.8					
В	1.18										
_,	600 μm			1.1	32.8	33.7					
%	3 0 0				17.2						
	1 5 0				10.1						
	7 5				6.0	9.0					
		# III			. 1 . 3 . (.	n.r. → A →	— (,)	(¬)		Α . Ν	
	F 0	谷 宵	対のかる	5 い目の) 大きさ 	別配合率	K (A)	×(B)		合 成	
-	53 mm										
	37.5										
	26.5	20.2								100.0	
	1 9	19.2	12.9			60.0				99.0	
	13.2	1.1	12.4	2.8		59.6				80.0	
	9.5										
	4.75	0.1	0.9	2.7	4.1	39.7				47.5	
	2.36		0.2	0.3	3.8	25.7				30.0	
	1.18										
	600 μm			0.0	1.3	20.2				21.5	
	3 0 0				0.7	13.8				14.5	
	1 5 0				0.4					7.5	
	7 5				0.2	5.4				5.6	
_	ほどのやかい	ᢦ ᆵ┑ᄉ ╺ ┷╶	~ 44								
$\frac{4}{}$	骨材の密度による	○配台率 0 │	ソ佣止								
	骨 材									 	
1	<u></u>								Ī	31	
2	<u> </u>										
3	= ① × ②										
補	正配合率										
	一										

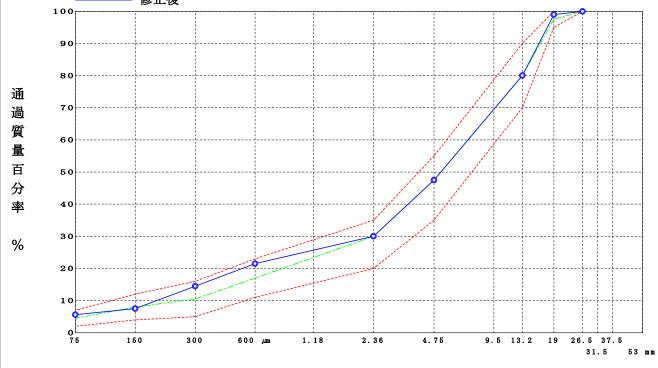
Γ

骨 材 の 粒 径 加 積 曲 線 図

目 的 配合設計


混合物の種類 再生粗粒度アスコン (2 0)


 試験年月日
 2024年
 4月15日


 試験
 者田子三由生

5. 合成粒度

ふるい目		<u>粒 度</u> 修 正 後	目標粒度	粒 度 範 囲
5 3 m m		-		
37.5				
3 1 . 5				
26.5	100.0	100.0	100.0	1 0 0
1 9	99.0	99.0	97.5	95 ~ 100
1 3 . 2	79.6	80.0	80.0	70 ~ 90
9.5				
4.75	50.7	47.5	47.5	35 ~ 55
2.36	29.2	30.0	30.0	20 ~ 35
1.18				
600 μm	12.5	21.5	17.0	11 ~ 23
3 0 0	7.3	14.5	10.5	5 ~ 16
1 5 0	4.0	7.5	8.0	4 ~ 12
7 5	2.7	5.6	4.5	2 ~ 7

ふるい目

設計圧裂係数への調整(添加剤量)

目 的 配合設計

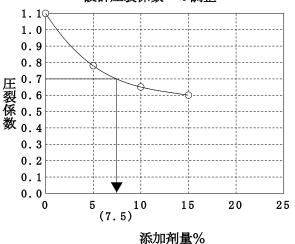
混合物の種類 再生粗粒度アスコン(20)

試験年月日 2024年 4月15日

試 験 者 田子三由生

対料名 再生骨材					
第3 mm 37.5 3 mm 37.5 31.5 26.5 19 100.0 113.2 99.3 9.5 113.2 99.3 99.5 113.8 11	試験項目	材料名			規格値
通 37.5 31.5 26.5 19 100.0 13.2 99.3 9.5 百 分率 % 4.75 66.1 2.36 42.8 1.18 600 μm 33.7 300 23.0 150 11.9	****	5.3 m m			/90 IH IES
通過質					
通過質量 19 100.0 13.2 99.3 9.5 日子 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1					
通過質量 19 100.0					
6 0 0 μm 3 3 . 7 3 0 0 2 3 . 0 1 5 0 1 1 . 9	通		1 0 0 0		
6 0 0 μm 3 3 . 7 3 0 0 2 3 . 0 1 5 0 1 1 . 9	過				
6 0 0 μm 3 3 . 7 3 0 0 2 3 . 0 1 5 0 1 1 . 9	貝 量				
6 0 0 μm 3 3 . 7 3 0 0 2 3 . 0 1 5 0 1 1 . 9	百		66.1		
6 0 0 μm 3 3 . 7 3 0 0 2 3 . 0 1 5 0 1 1 . 9	分				
6 0 0 μm 3 3 . 7 3 0 0 2 3 . 0 1 5 0 1 1 . 9	∞ %				
3 0 0 2 3 . 0 1 5 0 1 1 . 9	,0		3 3 . 7		
		3 0 0			
		1 5 0	11.9		
75 9.0		7 5	9.0		
旧アスファルト含有率 % 4.87 3.8以上	旧アスファルト	含有率 %	4.87		3.8以上
圧裂係数 MPa/nm 1.10	圧裂係数	M Pa/mm	1.10		1.70以下
微粒分量試験による損失量 % 1.2 5以下	微粒分量試験によ	る損失量 %	1 . 2		5 以下
最大密度 2.511	最大密度		2.511		

再生添加剤の性状


			-					
	項		E		弒	験	値	標準的性状
動	粘	度	(60℃)	mm^2/s		82.	1	80~1000
引	火		点	${\mathfrak C}$		26	8	250以上
薄膜	加熱後の)粘度	比 (6)	0 °C)		1.0	7	2以下
薄胆	莫加 熱	質	量 変 化	率 %	_	0.6	8	±3%以内
密	度	Ē	(15℃)g	/ c m ³	0	. 92	5	

<添加剤量と圧裂係数の関係>

添加剤量	0.0	5.0	10.0	15.0
圧裂係数	1.10	0.78	0.65	0.60

| 設計圧裂係数 | 0.70 | (規格値 0.60 ~ 0.80)

設計圧裂係数への調整

<設計圧裂係数への調整結果>

*#X#1/==4X/V\3X */	Mad TE リコン/ へっ
設計添加剤量	7.5
設計添加剤量(対混合物)	0.27

目 的 配合設計

混合物の種類 再生粗粒度アスコン (20)

 試験年月日
 2024年
 4月15日

 試験者
 田子三由生

骨:	材 の 種	類	1	A. 骨 材	のみ		В(旧	アスファルト行	含む)	
5号砕石				20.	. 2		20.20			
6号砕石				12.	. 9		12.90			
7号砕石				2 .	. 8		2.80			
砕砂				4.	. 1			4.10		
再生骨材 1	3 - 0			60.	. O					
	計			100.	. O			103.07		
設	計	針	入	度	1 / 1	0 m m				
旧 :	アス	ファ	ル	ト量	(外	割%)		3.07		
再生用] 添 加 剤 量	は(対アス	、ファル	ト量)	Ċ	%		7.50		
再生丿	用添加剂	量 (対	再 生 混	合物)	(外	割%)		0.27		
再生アスフ	ァルト量	(%)	4.0	4.5	5.0	5.5	6.0		5. 3	
再生アスフ	ァルト量	(外割%)	4.17	4.71	5.26	5.82	6.38		5.3	
旧アスフ	アルト量	(外割%)	3.07	3.07	3.07	3.07	3.07		3.0	
再 生 用 添	加剂量	(外割%)	0.27	0.27	0.27	0.27	0.27		0.2	
新アスフ	ァルト量	(外割%)	0.83	1.37	1.92	2.48	3.04		2.0	

目 的 配合設計

試験年月日 2024年 4月15日

混合物の種類 再生粗粒度アスコン(20)

試 験 者 田子三由生

1	2	3	4	5
骨材の種類	配合率(%)	骨材の密度(g/cm³) 表乾かさ見	計算に用いる密度	2/4
5号砕石	20.20	2.687 2.668 2.720	2.720	7.426
6号砕石	12.90	2.674 2.649 2.718	2.718	4.746
7号砕石	2.80	2.654 2.615 2.721	2.721	1.029
砕砂	4.10	2.661 2.627 2.723	2.723	1.506
再生骨材 13-0			2.740	
R J - 1	0.27		0.925	0.292
Σ2=	40.27		Σ (5)=	40.116

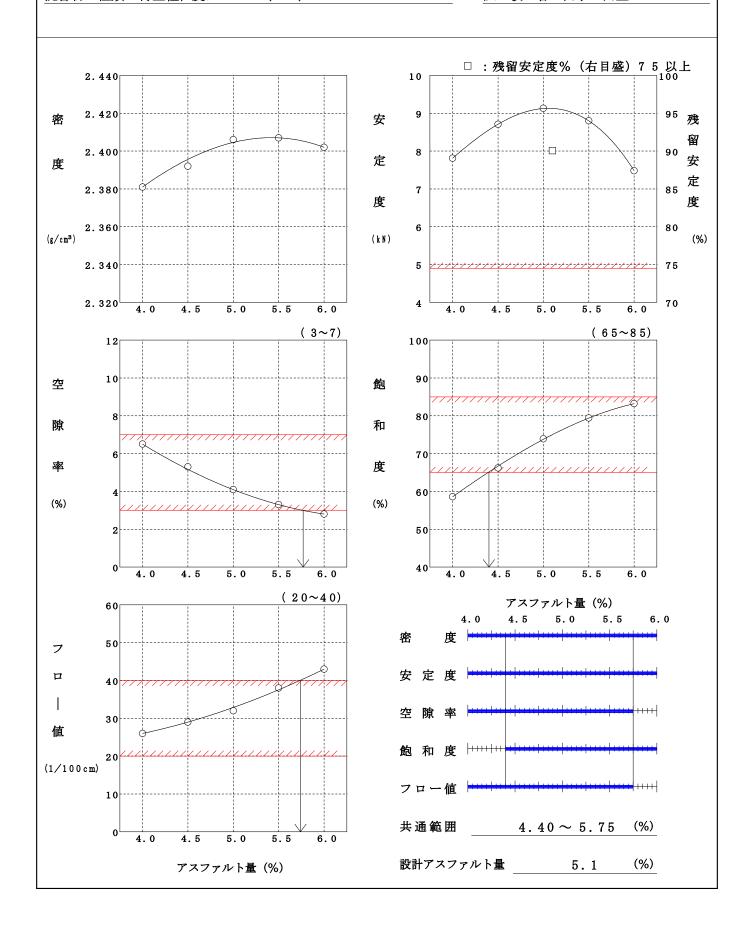
6	7	8	9	10	11)
アスファルト <u>量</u> (%)	アスファルトの 密 度	6/7	Σ⑤	8+9	理論最大密度 (Σ②+⑥)/⑩
0.83		0.803	40.116	40.919	2.546
1.37		1.326	40.116	41.442	2.527
1.92	1.033	1.859	40.116	41.975	2.508
2.48	1.033	2.401	40.116	42.517	2.489
3.04		2.943	40.116	43.059	2.471
2.03	-	1.965	40.116	42.081	2.504

マーシャル安定度試 験

目 的 配合設計

試験年月日 2024年 4月15日

混合物の種類 再生粗粒度アスコン(20) 試 験 者 田子三由生 アスファルトの種類 再生アスファルト_____ アスファルトの密度(A) _ 1.040 アスファルトの温度 160 ℃ 骨 材 の 温 度 200 $^{\circ}$ 突 固 め 温 度 140 ℃ 突 固 め 回 数 50 回 力計の係数(B) 0.142 ア容 安定/フロ 供試体寸法 水 活 活 密度 安定度 カゝ 体 質 厚さ(cm) めみ | 条番 1 2 3 平均 (g) (cm^3) (g/cm^3) (g/cm^3) (kN) 1/100 cm (kN/m) $\frac{\text{(1 - (1)/(2))}}{\text{(A)}} = \frac{\text{(1 - (1)/(2))}}{\text{×100}} = \frac{\text{(3)}}{\text{(3)}} + \frac{\text{(4)}}{\text{(4)}} = \frac{\text{(3)}}{\text{(5)}} \times 100$ 件|号 |9 - 8| % / 10|(B) X(f) 6. 43 6. 42 6. 40 6. 43 | 1227. 2 | 713. 2 | 1229. 9 | 516. 7 | 2. 375 59 8.38 1 6. 46 2 4.0 6. 26 6, 29 6. 29 6.29 6. 28 | 1226. 5 | 716. 0 | 1229. 4 | 513. 4 | 2. 389 7. 38 進 3 6. 44 6.40 6. 36 6.39 6. 40 | 1211. 4 | 704. 7 | 1213. 9 | 509. 2 | 2. 379 7, 67 平均 2, 381 2, 546 9. 2 6, 5 15, 7 7, 81 58. 6 26 3004 6. 34 6.34 6. 37 6.31 6. 34 | 1226. 4 | 714. 1 | 1228. 1 | 514. 0 | 2. 386 62 8.80 30 標 | 5 | 4.5 6. 37 6.41 6. 42 6. 43 6. 41 | 1226. 2 | 716. 5 | 1228. 1 | 511. 6 | 2. 397 58 8, 24 24 進 6 6. 31 6. 38 6. 32 6. 35 | 1224. 5 | 714. 4 | 1226. 3 | 511. 9 | 2. 392 9.09 33 6.39 64 平均 2. 392 | 2. 527 | 10.4 5. 3 | 15. 7 66. 2 8.71 29 3003 6. 37 6.37 6. 34 6.35 6. 36 | 1236. 8 | 724. 1 | 1237. 9 | 513. 8 | 2. 407 9.51 標 8 5.0 6, 35 6, 35 6, 29 6, 33 | 1234, 9 722. 6 | 1235. 9 | 513. 3 | 2. 406 8, 52 6.31 準 9 6. 35 6. 39 6. 39 6.39 6. 38 | 1236. 7 | 723. 9 | 1237. 9 | 514. 0 | 2. 406 9.37 33 平均 2. 406 | 2. 508 | 11. 6 | 4. 1 | 15. 7 | 73. 9 9. 13 32 2853 10 6. 34 6. 38 6. 38 6. 38 6. 37 | 1236. 9 | 725. 2 | 1237. 6 | 512. 4 | 2. 414 56 7. 95 36 標 | 11 | 5.5 2.402 6. 45 6.42 6.37 6.40 6. 41 | 1235. 7 | 722. 0 | 1236. 4 | 514. 4 | 69 9.80 36 準 12 6. 35 6. 39 6.38 6, 40 6. 38 | 1231. 8 | 720. 4 | 1232. 4 | 512. 0 | 2. 406 61 8.66 42 平均 2. 407 | 2. 489 | 12. 7 | 3. 3 | 16. 0 | 79. 4 8.80 38 2316 13 6. 26 | 6. 28 6. 32 6. 26 6. 28 | 1229. 6 | 718. 3 | 1230. 2 | 511. 9 | 2. 402 7. 10 標 | 14 | 6.0 6. 32 6. 29 6. 33 6.26 6. 30 | 1229. 1 717. 1 | 1229. 7 | 512. 6 | 2. 398 7.81 55 準 15 6. 37 6. 37 6. 41 6. 37 | 1238. 0 | 723. 9 | 1238. 7 | 514. 8 | 2. 405 53 6. 34 7. 53 43 平均 2. 402 | 2. 471 | 13. 9 | 2. 8 | 16. 7 83. 2 7.48 43 1740


設計アスファルト量の決定

目 的 配合設計

混合物の種類 再生粗粒度アスコン(20)

 試験年月日
 2024年
 4月15日

 試験
 者田子三由生

					3	残	F)	J E	安		定		度		武	颙	हे				
					計 スコン(試験年月 試験			F 4月: E	15日
ア	スフ	アルトの種	重類 再生ア	゚゚スファルト	`	アスフ	アルトの密度	(A)	1.	040	アン	スファルト	の温度	16	50	<u>°</u> †	骨材の	温 度_	2	00	℃
		突固	め 温	. 度	140		<u>°C</u>		突固	め回業	<u> </u>	50		回	力	計の係数	(B)_	0.	142		
供	供	①			4			7	8	9	10	111	12	13	14	15	16	17	18	(19	
	試体	アスファルト		厚	典試体寸法 【さ(cm))		空中質	水中質	表乾質量(g)	容	かか	度理	アスファル	空 隙	骨材間 隙	飽和	安定 力読 計	定度 を	フ ロ 「 値 1/100 cm	残留安定度 ‰
	番	ルト	1	2	3	4	平均	量 (g)	量 (g)	量 (g)	積 (cm³)	(g/ cm ³)	論 (g/cm³)	ト積 (%)	率 (%)	率 (%)	度 %	のみ	度 (kN)	値 1/100 cm	度 %
件	号	<u>量</u> %									9 – 8	7 / 10		(A)	(1 — (11)/(12) ×100	13 + 14	®∕®×100		(B) X(A)		
-	1				6. 41			1218.6											8. 38	35	
標	2		6. 34					1226. 4											10. 08	34	
-	3	5. 1	6. 31	6. 30	6. 32	6. 30	6. 31	1213.8	710. 0	1214. 7	504. 7	2. 405						61	8. 66	34	
準																					
		平均										0.404	0. 504	11.8	4.0	15.0	74. 7		0.04	0.4	
	1	-	6 32	6. 31	6. 32	6. 33	6 32	1226. 9	717 0	1228 0	511 A		2. 504	11.8	4.0	15. 8	14. 1	5 1	9. 04 7. 24	34	
水	2		6. 40			6. 41		1228. 6		1229. 6									9. 09		
N	3	5. 1		6. 44				1214. 0		1215. 2									8. 09		
		•			0.10																
浸																					
		平均										2. 407	2. 504	11.8	3. 9	15. 7	75. 2		8. 14		90.
_																					
-																					
		-																			
		平均																			
	•	一一岁		1	1			1		1	1		I	1	1	1				(l	

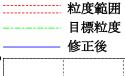
	ホットビン粒度設計(修正後)													
	İ	的	蓝	合 割	ն -	⇒ L					4 <i>⊊</i>	脸 左 日 ロ	2024年	4月15日
						미 スコン	(0						田子三由生	<u>4ЛІЭН</u>
<u> (#6</u> °⊏	148000	性织	一件生	.作业不少.5	٤)	<u> </u>	(2	<i>i U)</i>			P\		四丁二田生	
3	3. 使用予定骨材の合成粒度 修正後													
 •	JC/13	1 VC I	2 47 42	4ビン		3ビン	<u> </u>	2ビン	1ビン	再生骨材	回収ダスト			
	骨	材	•	467		367		2.0	1.67	计工目机	四枚グハド			
配	合	率 A	. %	20	. 0	12.	1	5.6	2.0	60.0	0.3			
		5 3 ı	n m											
/	3	37.	5											
通		31.												
過		26.	5	100										
質具		1 9				100.				100.0				
量百		13.	2	4	. 2	96.	7	100.0		99.3				
1		9.5	_			_	_							
分率		1.7				3.	5		100.0					
B		2.3						1.8	98.7	42.8				
		1.18							4.77	0.0.7	100 0			
%		0 0	μ m						47.8		100.0			
′		300							28.1					
		1 5 0 7 5							1.4	9.0				
	'	ıο							1.4	9.0	71.5			
				各	骨	材のき	, c	るい目の	大きさ	別配合	率 (A)	×(B)		合 成
	5 3	m m												,,,,,,
	3 7	. 5												
	3 1	. 5												
	2 6	. 5		20	. 0									100.0
	1 9			19	. 9	12.	1			60.0				99.9
	1 3	. 2		0	. 8	11.	7	5.6		59.6				80.0
	9.	5												
	4.	7 5				0.	4	5.1	2.0	39.7				47.5
	2.							0.1	2.0	25.7				28.1
	1.													
	6 0		m						1.0					21.5
	3 0								0.6					14.7
	1 5	0							0.1					7.4
	7 5								0.0	5.4	0.2			5.6
4	骨材	の郊田	ぎに上	る配合	· 率 ·	の補正								
- -	13 (4)		~,~~	<u>~ □□ □</u>	7-	-> 1111111								
L	骨	材												
1	配	合	率											
2		密	度											
		① >												
補	正	配名	率(
3/	/ 計	× 1	0 0											

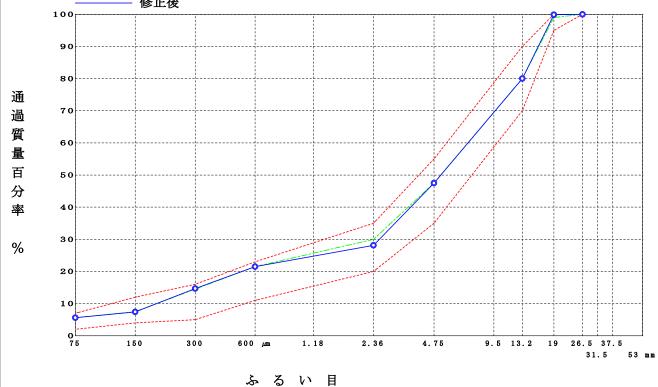
Γ

ホットビンの粒径加積曲線図

目 的 配合設計

試験年月日 2024年 4月15日


混合物の種類 再生粗粒度アスコン (20)


試 験 者 田子三由生

5. 合成粒度

ふるい目	合成 然 ***	<u></u> 粒 度	目標粒度	粒 度 範 囲
	作図法	修正後		
53 mm				
37.5				
3 1 . 5				
26.5	100.0	100.0	100.0	1 0 0
1 9	99.9	99.9	99.0	95 ~ 100
1 3 . 2	79.5	80.0	80.0	70 ~ 90
9.5				
4.75	50.8	47.5	47.5	35 ~ 55
2.36	30.1	28.1	30.0	20 ~ 35
1.18				
600 μm	20.1	21.5	21.5	11 ~ 23
3 0 0	15.0	14.7	14.5	5 ~ 16
1 5 0	8.6	7.4	7.5	4 ~ 12
7 5	6.9	5.6	5.6	2 ~ 7

6. 粒径加積曲線図

目 的 配 合 設 計試験年月日 2024年 4月15日混合物の種類 再生粗粒度アスコン (20)試 験 者 田子三由生

骨 材 の 種	類	A	骨材の) み	B(旧アスプ	ファルト含む)
5 号砕石			20.2		2	0.20
6号砕石			12.9		1 :	2.90
7号砕石			2.8		:	2.80
砕砂			4.1			4.10
再生骨材 13-0			60.0			
計		1	00.0		10	3.07
設計	針	入	度	1 / 1 0 m m		
旧アス	ファ	ルト	量	(外割%)	3 .	. 07
再生用添加剤量	(対アン	くファルト	量)	%	7 .	. 50
再生用添加剤	量 (対	再生混合	物)	(外割%)	0	. 27
再生アスファルト量	(%)	5.1				
再生アスファルト量	(外割%)	5.37				
旧アスファルト量	(外割%)	3.07				
再生用添加剂量	(外割%)	0.27				
新アスファルト量	(外割%)	2.03				

目 的 配合設計

試験年月日 2024年 4月15日

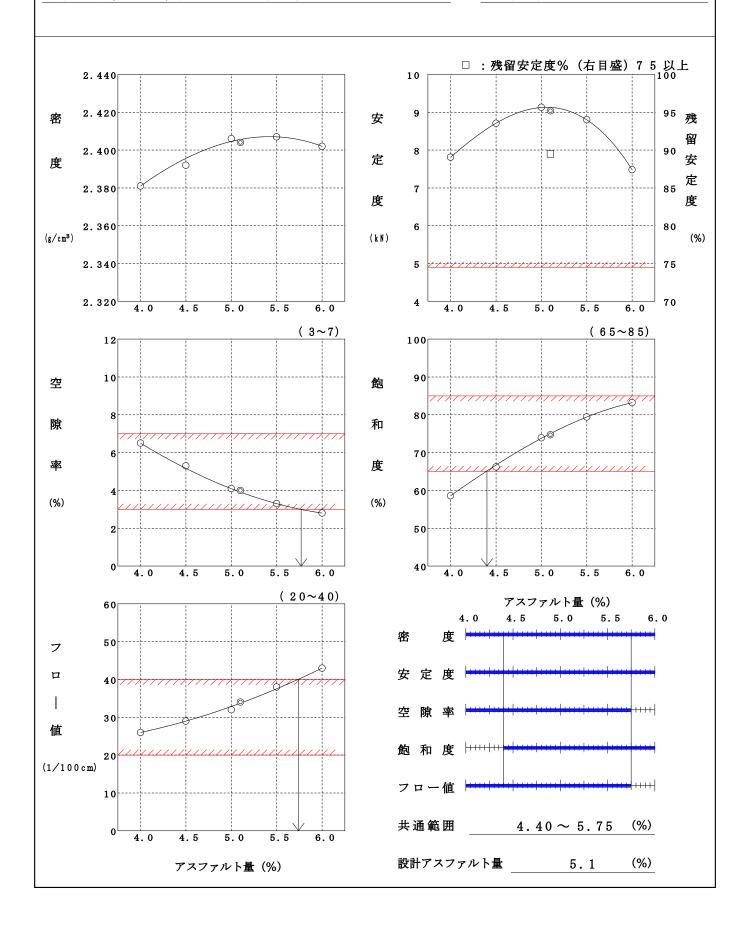
混合物の種類 再生粗粒度アスコン(20)

試 験 者 田子三由生

1	2	3	4	5
骨材の種類	配合率(%)	情材の密度(g/cm³) 表 乾 か さ見 掛	計算に用いる密度	2/4
5号砕石	20.20	2.687 2.668 2.720	2.720	7.426
6 号砕石	12.90	2.674 2.649 2.718	2.718	4.746
7号砕石	2.80	2.654 2.615 2.721	2.721	1.029
砕砂	4.10	2.661 2.627 2.723	2.723	1.506
再生骨材 13-0			2.740	
R J - 1	0.27		0.925	0.292
Σ ②=	40.27		Σ ⑤ $=$	40.116

6	⑦	8	9	100	111
アスファルト 量 (%)	アスファルトの 密 度	6/7	Σ⑤	8+9	理論最大密度 (Σ②+⑥)/⑩
2.03	1.033	1.965	40.116	42.081	2.504
	1.033				

					ų,	7	<u> </u>	シ	ヤ	<i>]</i>]	<u>, </u>	安	定	度	試	颙	È				
	目	的	配合	設書	 												試験年月	目 2	024年	F 4月	15日
混	合物	の種類	再生粗	粒度アス	スコン (2	20)											試 験	者 田	子三由生	<u>E</u>	
ア	゚スファ	アルトの種類	類 再生ア	スファルト		アスフ	アルトの密度	(A)	1. (040	アニ	スファルト	の温度	1 6	30	<u>°</u> 1	骨材の	温 度_	2	00	င
		突固	め温	度	140		<u>°</u>		突固	め回数	数	50		回	カ	計の係数	t (B)_	0.	142		
供	供	①	2	3	4	5	6	7	8	9	10	11)	12	13	14	15	16	17	18	(19)	
試	試	アス	-	#	共試体寸法			空中	水	表	容	密	度	ア容ス	空	骨材	飽	安定	定度	フ	残留
体条	体番	ファル	1	厚	世 <mark>議体寸法</mark> さ(c m) 3	4	平均	空中質量	質量	型 質 量	積	密 か さ (g/ cm³)	理論	ファ ル ト積	隙率	間隙率	飽和度%	力読 計 のみ	安定度	値	残留安定度 ‰
l	号	ト 量 %	1	4	3	4	平均	(g)	(g)	(g)	(cm³)	(g/ cm ³)	(g/cm ³)	(%) (\)	(%) (1 –(1)/(2)	(%)	(%) (B)/(B×100		(kN) (B) ×(n)	1/100 cm	(%)
	1		6. 41			6. 43		1228 8	720 2			2. 412		(A)	X1 0 0	8 , 8	, g, g, 100		8. 66		
標	2		6. 41			6. 41		1213. 7											9. 23		
12F			6. 33		6. 33	6. 33						2. 399							9. 23	39	
準																					
	3	平均										2. 404	2. 504	11.8	4.0	15.8	74. 7		9.04	34	
	1		6. 30	6. 32	6. 32	6. 31	6. 31	1223. 1	715. 1	1224. 3	509. 2	2. 402						62	8. 80		
水	2	_	6. 43	6. 44	6. 45	6. 45	6. 44	1226. 3	716. 6	1227. 1	510. 5	2. 402						50	7. 10		
	3	5. 1	6. 29	6. 28	6. 27	6. 28	6. 28	1210.6	710. 1	1211.6	501. 5	2. 414						59	8. 38		
 浸																					
~		平均										0.400	0.504	11.0	0.0	15.7	75.0		0.00		
		1-40										2. 406	2. 504	11.8	3. 9	15. 7	75. 2		8. 09		89.


平均

マーシャル安定度試験

目 的 配合設計

混合物の種類 再生粗粒度アスコン(20)

武験年月日 2024年 4月15日 武 験 者 田子三由生

現場配合の決定

	配合設計	試験年月日	2024年	4月15日
混合物の種類	再生粗粒度アスコン(20)	試 験 者	田子三由生	

1バッチ 1000 kg

						17 19	1000 kg
			骨材配合比%)	外割配合比%	内割配合比(%)	1バッチ質量(k g)	骨材累加質量(kg)
4	ビ	ン	20.0	20.00	18.97	190	3 8 0
3	ビ	ン	12.1	12.10	11.48	115	190
2	ビ	ン	5.3	5.30	5.03	5 0	7 5
1	ビ	ン	2.6	2.60	2.47	2 5	2 5
再	生 骨	材	60.0	63.07	59.86	6 0 1	601
旧:	アスファ	ルト		(3.07)	(2.91)		
再	生用添力	加剤		0.23	0.22		
新	アスファ	ルト		2.07	1.97	19.7	19.7
	合 計		100.0	105.37	100.00	1000.7	1000.7

※添加剤は再生ドライヤ内添加のため 再生材の計量値に含まれます。

- (1) 混 合 温 度・・・・・・・ 混合温度は185℃を超えない範囲でアスファルトの動粘度 150~300cSt(セイボルトフロール秒75-150) のときの温度範囲から選び160 ℃とする。
- (2) 再生骨材加熱温度・・・・・・・ 加熱温度による旧アスファルトの劣化を防ぐ目的により140 ℃とする。
- (3) 骨材加熱温度・・・・・・・・ 混合温度より 40 ℃高くして 200 ℃とする。
- (4) アスファルト加熱温度・・・・・ 混合温度と同じ 160 ℃とする。
- (5) 初期転圧温度・・・・・・・・・転圧温度は再生アスファルトの性状により140 ± 15 ℃とする。